Math 579 Fall 2013 Exam 9 Solutions

1. Describe a process that yields a sequence whose generating function is given by $\frac{1}{1-\frac{x}{(1-x)^{2}}}\left(=\frac{(1-x)^{2}}{x^{2}-3 x+1}\right)$.

This is Example 8.14 in the text. Given a list of m objects, there are m ways to pick one distinguished object. This has generating function $\frac{x}{(1-x)^{2}}=\sum_{m \geq 0} m x^{m}$. Now, we divide a list of n objects into nonempty sublists. From each sublist we choose one element to distinguish. We now use Thm 8.13.
2. Let $k \in \mathbb{N}_{0}$, and consider the sequence given by $a_{n}=\binom{n+k}{k}$. Prove that it has generating function $A(x)=\frac{1}{(1-x)^{k+1}}$.
We use induction on k. For $k=0$ we have the geometric series $\frac{1}{1-x}=\sum_{n \geq 0} x^{n}$. Suppose now that $\frac{1}{(1-x)^{k}}=(1-x)^{-k}=\sum_{n \geq 0}\binom{n+k-1}{k-1} x^{n}$. We take derivatives of each side to get $(-k)(-1)(1-x)^{-k-1}=$ $\sum_{n \geq 0}\binom{n+k-1}{k-1} n x^{n-1}$. We drop the initial zero term, then reindex to get $\frac{k}{(1-x)^{k+1}}=\sum_{n \geq 0}\binom{n+k}{k-1}(n+$ 1) x^{n}. We divide both sides by k, and note that $\binom{n+k}{k-1} \frac{n+1}{k}=\frac{(n+k)!(n+1)}{(n+1)!(k-1)!k}=\frac{(n+k)!}{n!k!}=\binom{n+k}{k}$.
3. Consider the sequence $a_{n}=n^{2}+2 n+3+(-1)^{n}$ for $n \geq 0$. Find and simplify the generating function for this sequence.
We use the result of problem 2. We have $2\binom{n+2}{2}=(n+2)(n+1)=n^{2}+3 n+2$ We have $\binom{n+1}{1}=n+1$. Hence $n^{2}+2 n+3=2\binom{n+2}{2}-\binom{n+1}{1}+2$, so $A(x)=\frac{2}{(1-x)^{3}}-\frac{1}{(1-x)^{2}}+\frac{2}{1-x}+\frac{1}{1+x}=\frac{x^{3}+2 x^{2}-3 x+4}{(1-x)^{3}(1+x)}$.
4. Use generating functions to solve the recurrence specified by $a_{0}=2, a_{n}=3 a_{n-1}+2(n \geq 1)$.

Let $A(x)=\sum_{n \geq 0} a_{n} x^{n}$. We have $A(x)-3 x A(x)-\frac{2}{1-x}=\sum_{n \geq 0} a_{n} x^{n}+\sum_{n \geq 0}\left(-3 a_{n}\right) x^{n+1}+\sum_{n \geq 0}(-2) x^{n}=$ $\sum_{n \geq 0} a_{n} x^{n}+\sum_{n \geq 1}\left(-3 a_{n-1}\right) x^{n}+\sum_{n \geq 0}(-2) x^{n}=a_{0} x^{0}+(-2) x^{0}+\sum_{n \geq 1}\left(\bar{a}_{n}-3 a_{n-1}-2\right) x^{n}=0$. Hence $(1-3 x) A(x)=\frac{2}{1-x}$ so $A(x)=\frac{2}{(1-x)(1-3 x)}=\frac{3}{1-3 x}+\frac{-1}{1-x}$, where the last step required partial fractions. Hence $A(x)=3 \sum_{n \geq 0} 3^{n} x^{n}-\sum_{n \geq 0} 1 x^{n}=\sum_{n \geq 0}\left(3^{n+1}-1\right) x^{n}$, so $a_{n}=3^{n+1}-1$.
5. When faced with a stack of exams to grade, I give each exam in turn either a pass or a fail. At some point (perhaps before I even start), my booze runs out and I stop grading immediately. The last thing I do is choose one of the remaining exams (and there is always at least one exam left), on which I draw a smiley face. Let a_{n} represent the number of ways I can do this with n exams. For example, $a_{0}=0$ (can't draw a smiley), $a_{1}=1, a_{2}=4$. Find a closed form for a_{n}.
Let $G(x)=\sum_{n \geq 0} 2^{n} x^{n}=\frac{1}{1-2 x}$ denote the grading part, and $S(x)=\sum_{n \geq 0} n x^{n}=\frac{x}{(1-x)^{2}}$ denote the smiley part. We combine these with the product formula $A(x)=G(x) S(x)=\frac{x}{(1-2 x)(1-x)^{2}}=\frac{2}{1-2 x}+$ $\frac{-1}{1-x}+\frac{-1}{(1-x)^{2}}$, where partial fractions were used in the last step. We now have $A(x)=2 \sum_{n \geq 0} 2^{n} x^{n}-$ $\sum_{n \geq 0} 1 x^{n}-\sum_{n \geq 0}(n+1) x^{n}=\sum_{n \geq 0}\left(2^{n+1}-1-(n+1)\right) x^{n}$, so $a_{n}=2^{n+1}-n-2$.

